BATLOGGER

Manual

Firmware version V 2.6

Ultrasonic microphone

GPS Antenna

LCD display

Key

MENU Key

Key

Speaker

SD / SDHC card reader

Power supply connector

3.5 mm headphone jack

www.batlogger.com

Elekon AG
Cheerstrasse 16
CH-6014 Luzern

www.batlogger.com
Table of contents

1 Notes... 4
2 Overview.. 5
 2.1 General.. 5
 2.2 Device variants.. 5
 2.3 Data storage.. 6
2.4 Recording... 6
 2.4.1 Check and play of recorded #****.wav files.. 6
 2.4.2 Global positioning and time recording / GPS... 6
 2.4.3 Recording the mode of operation of the BATLOGGER.. 6
2.5 Accessories.. 7
 2.5.1 SD card... 7
 2.5.2 Ultrasonic microphone.. 7
 2.5.3 Microphone extension (optional)... 7
 2.5.4 Extension kit green 100m (optional).. 7
 2.5.5 Headphones (optional)... 8
 2.5.6 Strongbox S (optional)... 8
 2.5.7 Strongbox (deprecated, optional)... 8
3 Preparation.. 9
 3.1 Battery charging... 9
 3.2 Adjusting parameters.. 9
4 Switching the BATLOGGER on and off (with main menu and info lines).................................. 10
 4.1 Activating the BATLOGGER.. 10
 4.2 Shutting the BATLOGGER off (manual and automatically).. 10
 4.3 Device lock (Theft protection).. 11
 4.4 Download of new firmware when starting up.. 12
5 Record (bat calls).. 13
 5.1 Manual Trigger (Triggering recording by keystroke).. 13
 5.2 Continuous Trigger (Continuous recording).. 13
 5.3 Automatic Trigger ("Automatic" recording).. 14
 5.4 Live monitoring .. 15
 5.5 Menu functions in record mode... 15
 5.6 Information displayed in record mode .. 16
 5.7 Delayed recording (Recording in time windows)... 18
 5.8 Interval recording (Recording in intervals).. 18
6 Process (Playback, analyse and erase stored wav files)... 19
 6.1 Choose folder (if used).. 19
 6.2 Choose Recording.. 20
 6.3 Play Mixer.. 20
 6.4 Play Pitch... 20
 6.5 Play All.. 20
 6.6 Analyse.. 21
 6.7 Delete (Delete recordings).. 21
7 Setup (Settings).. 22
 7.1 Operation.. 22
 7.2 Setup-Menu.. 23
8 Recordings and Files... 33
 8.1 The audio data file "xxxxxxxx.wav" (e.g. 10160435.wav).. 33
 8.1.1 GUANO metadata... 33
 8.2 Meta data file "xxxxxxxx.xml" (Bsp. 10160435.xml)... 34
 8.3 Parameter file "BATPARS.xml".. 35
 8.4 Log file "BATREC.log"... 36
 8.5 Google-Earth file "route.kml"... 37
 8.6 Track file "xxxxxxxx.gpx" (e.g. 10160435.gpx).. 37
1 Notes

Development: The BATLOGGER was developed in a cooperation of the Swiss Federal Research Institute WSL and the University of Applied Sciences Northwestern Switzerland FHNW, with financial help from the Environmental Research of the Swiss Federal Office for the Environment FOEN.

Environmental conditions: The BATLOGGER is housed in a robust synthetic case for measuring devices, and it is operated through a polyester foil keyboard. With the many openings for GPS, microphone, memory card, charging plug etc., it does only reach imperviousness level IP 30 and therefore is not protected against water. When used in the field, unobserved and for extended periods of time, the logger should be stowed in a waterproof box (Strongbox Part # 212.006 .. 008) or bag, with the microphone externally connected through a cable.

Microphone / Ultrasonic sensor: An active electret microphone is used as plug-in ultrasound sensor. Attention has to be payed to a proper fitting of the microphone in its plug. The microphone itself can be damaged by water. It must be protected from rain and extreme humidity, and it requires corresponding positioning. For special recording purposes, the microphone can be connected with the logger through a shielded stereo audio cable of no more than 2 m length.

Speaker: The speaker can also be used for monitoring during recording. Depending on environment and volume this may lead to acoustic feedback (loud whistling). In this case, reduce the volume and hold the BATLOGGER further away from reflecting objects such as walls or your own body or use headphones.

Li-ion battery: The internal power is provided by a lithium-ion battery of 3,6 V and 4600 mAh. When transporting and storing several BATLOGGERs together, the corresponding regulations have to be followed.

Storage media SD – card: The BATLOGGER uses SD / SDHC /SDXC cards with FAT32 file system as storage media. Test have shown, that cards of different vendors may vary in writing and erasing speed. We refrain from giving recommendations for specific products or vendors, as offered sizes and technologies change constantly, which may also influence card performance.

GPS receiver: GPS requires a direct line of sight between the receiver and the satellites. If an object is within direct path, the accuracy suffers due to reflections and attenuation of the signals. This is particularly problematic in urban areas, in valleys and on mountain slopes. Even smaller objects (tree cover, roof, human body) can lead to reflections and attenuation. For accurate positioning it is therefore essential to have unobstructed view to the sky.

Legende for display illustrations:
On the following pages the operation of the BATLOGGER is explained using symbolic representations of the LCD display. The illustrations are only for the sake of clarity and understanding, and do not necessarily reflect what you see on the device.

Display symbology (default settings) in the following explanations:

- Display off
- Backlight full
- Backlight dimmed
- Backlight off
2 Overview

2.1 General

The BATLOGGER is a data logger, which records ultrasound vocalisations of bats in real-time, and stores them for later processing on a SD / SDHC memory card (real-time recording system).

In a real-time recording system, the ultrasonic signal is digitized directly without change and with high sampling rate. Hereby the BATLOGGER continuously analyses the signal and only stores it to the SD card when bat activity is detected. The Signal is recorded to internal RAM and subsequently, if certain criteria is fulfilled stored, as recording files (sequences of echolocation calls) onto SD card.

Apart from the bat calls, which are stored as WAVE files, additional information is written in text format into a “.xml” file, which stores all the settings of the BATLOGGER at the time of recording, including time, date and location of the recording (GPS data), and the temperature of the logger.

To allow a later overview over all deployments of the BATLOGGER, its operating state is being written to a “LOG” file on the SD card.

The BATLOGGER is thus especially suitable for autonomous operation and long-term monitoring.

2.2 Device variants

The BATLOGGER is offered in a slightly extended version since the end of 2012 (Model: BATLOGGER M). It additionally includes an integrated mixer for live monitoring of the bat calls during recording. BATLOGGER M has speaker holes on the top, 3-line display and has Part #: 212.013 on the nameplate.

Further small improvements have been added since. See hardware revisions below.

In this manual the term BATLOGGER M and BATLOGGER is used synonymously.

Hardware revision history:

- **HW Revision A0:** BATLOGGER, initial release
- **HW Revision B0:** BATLOGGER M, live monitoring, 3-line LCD
- **HW Revision B1:** BATLOGGER M, compatibility with FG black
- **HW Revision B2:** BATLOGGER M, new GPS module with GLONASS
- **HW Revision B3:** BATLOGGER M, relay to switch ext. power supply
- **HW Revision B5:** BATLOGGER M, new GPS module with Galileo

The revision number can be found in the BATREC.log file in the “power on” entry.
2.3 Data storage

The audio files are stored on memory card as #****.wav files (where # = 4 digit serial number of the BATLOGGER), with consecutive numbering (***) For every #****.wav file, an #****.xml file is stored, which contains all parameter settings, date, time, geographic position and temperature at the time of recording of the corresponding WAVE file. Ultrasound data of the microphone are first written to the internal Random Access Memory (RAM) of the BATLOGGER. After termination of a single recording sequences (Recording...), the data are stored automatically from RAM to the SD card (Saving... #****.wav). During this storage time (duration depends on file size and card type), the BATLOGGER is blocked.

2.4 Recording

The BATLOGGER can be operated in different ways. As a basic principle, when the logger is in "Record" mode, the signal from the microphone is constantly written to internal RAM (Sampling...).

If the BATLOGGER is set for continuous recording, the RAM is filled with data and thereafter data are written to the memory card. As the loggers RAM is limited to 32 MB, the length of a single recording sequence can not exceed approx. 53 seconds, but can be set to less. Subsequently this recording sequence will be written as #****.wav file to the SD card and a new recording will start, thereby overwriting data in RAM. The time required for data storage to the memory card is largely depending on the file size but also on the type of card. In general the writing of the file should require significantly less time than the recording itself.

In manual recording the triggering has to be performed through the key pad and may also be stopped this way. If a manual stop does not occur, the recording will stop automatically after a user selectable manual trigger time (default = 10 sec), and the #****.wav file be written to memory card.

In automatic recording the signal from the microphone is constantly monitored and the recording started automatically, when a triggering event is registered (detected ultrasound signal). The duration of such recordings depends on the presence of the triggering criteria. The default setting allow for a recording duration which includes 0.5 seconds before the first and 1 second after the last trigger event (pre- and post-trigger). With the default settings, the shortest recording duration is therefore 1.5 seconds, which corresponds to roughly 1 MB of data on the SD card. To reduce recurring recordings of the same animal, a trigger ignore time can be configured.

2.5 Check and play of recorded #****.wav files

For immediate control, single stored audio files can be replayed through headphones or speaker in mixer or time expansion mode. Ultrasound signals are transformed to audible range, in time expansion slowed down by a user selectable factor x (default x = 10). A stored sequence therefore requires an x-fold playback time of the original recording to monitor. Only recorded files can be played back and listened to. Additionally recording details of a file such as date, time, length, peak frequency and more can be displayed.

Single recordings on the memory card can also be erased through this mode. Erasing the complete memory card must be achieved by formatting it (Settings menu).

2.6 Global positioning and time recording / GPS

The BATLOGGER is equipped with a GPS receiver. Its positioning and time data are stored in parallel to the #****.wav file in a corresponding #****.xml file, and into a Google-Earth -.kml file. Further on, the travelled track can be recorded to a GPX file.

If no GPS reception is possible, a manual position can be setup (see page 23). It will then be stored together with the recording data. It is also possible to navigate to this position by using the GPS status display ("Show Status"). There the distance and heading from the current position to the manual position is displayed continuously (find starting point again, Geocaching, ...).

2.7 Recording the mode of operation of the BATLOGGER

For later control of a BATLOGGER's state, its mode of operation is sequentially written to memory card into a separate "log"-File (BATREC.log). This "BATREC.log" file is constantly added to, and will not be overwritten. However, formatting the SD card will also erase this log file.
2.8 **Accessories**

2.8.1 **SD card**

- For data storage a removable SD / SDHC / SDXC card up to 128 GB card size is used (32 MB to 128 GB tested). When the term “SD card” is used, always an SD / SDHC / SDXC card is meant. The card must be formatted as FAT32.
- SD cards larger than 32 GB (SDXC cards) may be formatted with exFAT upon delivery and must be formatted by the BATLOGGER with FAT32 before use. To do this insert the SD card into the BATLOGGER's memory card slot and turn it on the BATLOGGER. You will be asked whether the card should be formatted. Press to format and confirm with .

CAUTION: All data on the SD card will be deleted.
- The SD card must be inserted into the memory card slot until it clicks into place before turning on the BATLOGGER. To remove the SD card, turn off the BATLOGGER and press the SD card in gently. The SD card pops out and can be removed.
- SD cards may have a write protect switch that prevents writing to the cards when the switch is on LOCK.
- A recent version of BATPARS Editor software (Windows and Mac) is stored on the included SD card. The executable file is in directory Software/BATPARS and can be started from there directly. Installation is not required.
- A recent version of BatExplorer PC software is stored on the included SD card. It must be installed on the computer before first use. It can be found in the directory Software/BatExplorer.

2.8.2 **Ultrasonic microphone**

As ultrasonic sensor a pluggable active electret microphone is used. The microphone must be plugged into the corresponding microphone jack on top of the device before use. Please make sure the microphone is plugged in completely until dead stop to ensure maximum contact.

Different microphone types can be used:

- Ultrasonic microphone (Part # 212.215)
 MEMS-Electret technology, omnidirectional
- Ultrasonic microphone FG black (Part # 212.233)
 Electret condenser technology, omnidirectional, good weather resistance

When using it with a BATLOGGER (Part # 212.003) A, an extension cable (see below) must be used. With a BATLOGGER M (Part # 212.013) this is not needed.

If the microphone is damaged, it can be replaced with a new, functional replacement microphone (Part # 212.215 or Part # 212.233).

2.8.3 **Microphone extension (optional)**

For special recordings a commercially available, shielded audio cable (stereo) up to about 2m length may be inserted between BATLOGGER and microphone (Microphone extension Part # 212.004).

2.8.4 **Extension kit green 100m (optional)**

In order to record at greater distance to the BATLOGGER the extension kit green 100m can be used instead of the supplied microphone. The special microphone FG green can be located up to 100 meters away. For example, it is possible to attach the microphone on the top of a measuring mast, while the BATLOGGER can be placed protected and easily accessible on the ground.

(Extension kit green 100 Part # 212.015)
1. Insert the cables plug into the microphone jack of the BATLOGGER.
2. If needed: Loosen the grounding wire from the cable, strip and contact it with appropriate means to ground.
3. Insert the ultrasonic microphone FG green into the protective tube. Make sure the microphone is plugged in completely until dead stop to ensure maximum contact.
4. Place and fasten the protective tube at the recording location. The protective tube may not be placed with the opening upwards, as otherwise rain or moisture can collect in the tube and the microphone may be damaged. It is advised to install it horizontally or with the opening slightly downwards.

If used together with a StrongBox (see below), the cables plug must be inserted into the protective tube of the StrongBox.

2.8.5 Headphones (optional)

To listen to recordings a standard headphone with 3.5mm plug is used (Part # 212.012). Plug your headphone into the headphone jack and adjust the volume to a comfortable level in the Setup menu (see also below).

2.8.6 Strongbox S (optional)

The Strongbox S (Part # 212.020) provides long-term surveillance and monitoring of bat habitats. It protects the BATLOGGER M from weather influences, enables independent operation for up to 19 nights thanks to additional batteries and enables direct operation with a solar panel.

Please read the dedicated manual for detailed information on using it.

2.8.7 Strongbox (deprecated, optional)

The Strongbox (Part # 212.006 .. 008) provides long-term surveillance and monitoring of bat habitats. It protects the BATLOGGER against weather and allows to run it independently up to 19 nights.

Before using the Strongbox its battery must be fully charged with the special charger supplied.

Only the charger supplied must be used with the Strongbox, not the BATLOGGER power supply. Please refer to the instructions of the charger.

Using the BATLOGGER with the Strongbox:
1. Remove the ultrasonic microphone from the BATLOGGER.
2. Plug in the power plug of the Strongbox into the power supply connector of the BATLOGGER.
3. Plug in the microphone extension cable into the microphone jack of the BATLOGGER.
4. Plug in the ultrasonic microphone into the protective tube of the microphone extension. Make sure the microphone is plugged in completely until dead stop to ensure maximum contact. To remove the microphone from the protective tube, insert the included hose through the microphone and pull the hose with the microphone out of the tube gently.
5. Place the BATLOGGER into the Strongbox.
6. Turn on the BATLOGGER and put it into record mode. Settings to trigger and recording time windows are shown below.
7. Close the Strongbox. The microphone extension cable must be clamped into the provided opening of the Strongbox on the blue-clad parts of the cable. Take care that the Strongbox is closed completely to ensure proper sealing.
3 Preparation

3.1 Battery charging

Upon delivery the battery of the BATLOGGER may not be fully charged. Please charge the battery before first use.

1. Connect the supplied AC adapter to the BATLOGGER’s power supply connector.
2. Plug the AC adapter into a power outlet.
3. Charging begins when the charging indicator lights red or, for BATLOGGER M, “charging...” is displayed.
4. Charging is complete when the charging indicator turns green or, for BATLOGGER M, “charged” is displayed. The charging time can take several hours, depending on the state of charge.

Note: The BATLOGGER can also be operated with the AC adapter connected to e.g. extend the operation time.

3.2 Adjusting parameters

Basically the BATLOGGER can be used directly with factory settings. For some applications such as long-term monitoring parameters must be adapted accordingly.

Ideally, adjusting BATLOGGER parameters should take place before use, directly on a PC or Mac.

1. Insert the supplied SD card into the memory card reader of your computer and start the BATPARS editor software directly from the SD card.

2. Open the file “BATPARS.xml” which is stored in the root directory of the SD card by clicking the “Open...” button.
3. Change parameters as needed. e.g. set capture time window (schedule) for long-term monitoring and directly check programmed times in advance.
4. Save the parameter file by clicking “Save”. The parameters are now on the SD card.
5. Close the BATPARS editor software with “Close”.
6. Insert the SD card now in the BATLOGGER. The parameters are now loaded at startup.

See also on page 23 and page 35.
4 Switching the BATLOGGER on and off (with main menu and info lines)

4.1 Activating the BATLOGGER

"Power Off" The BATLOGGER is switched off.

When pressing both keys \(\textcircled{<} \text{and} \textcircled{>} \) simultaneously, the device will start up.

Serial number and software version are indicated on the display.

The SD/SDHC card is initialised.

If a parameter file "BatPars.xml" exists on the SD card, the BATLOGGER reads the contained parameter values. Without "BatPars.xml" the BATLOGGER works with internal parameter values, stored in "CMOS" from previous recordings. Default parameters will only be used, if "BatPars.xml" is void of parameters, or after a firmware download.

The BATLOGGER automatically switches to the main menu "Start Record?” and additionally shows changing information.

Main menu with info lines

Main menu points:

- **Recording** (see page 13)
 - Serial number, temperature and charging state of the internal battery.

- **Process** (see page 19)
 - Free memory on the SD card and last saved file number.

- **Settings** (see page 22)
 - Date (DD.MM.YYYY) and time (hh:mm) after GPS satellite contact.

- **Switching off**
 - No GPS satellites in contact. Reception from 4 satellites / accuracy. Indication of coordinates on GPS (format depending on settings) GPS disabled through setup.

4.2 Shutting the BATLOGGER off (manual and automatically)

Press key \(\text{Menu} \) in the main menu until "Shut Off?” appears.

Press key \(\text{x} \) to switch off the BATLOGGER.

Automatic shut-off:

- If no keys are pressed on the BATLOGGER for 4 minutes, and the device is not in recording or sleep mode, it will switch off automatically.
- If no SD/SDHC card is inserted, the BATLOGGER will switch off after 15 seconds.

"Power Off"
4.3 **Device lock (Theft protection)**

If device lock is enabled (see page 23), on device start-up or wakeup, the correct PIN must be entered before the device can be used.

The device lock can be used to prevent manipulations on a running unattended device or to leave the device unusable and thus unattractive for possible thieves.

Use the keys `<>` to change the digit between “<” “>”.
Press [Menu] key to switch to the next digit or to delete the digit on the left with `<->`.
Press the key [Menu] to switch to enter the PIN with `<.>`.

When the correct PIN was entered, the device will start up as usual.

When an incorrect PIN was entered, the device will turn off. After 5 incorrect attempts, the device is blocked and needs to be unblocked with the PUK (Personal unblock key). Contact Elekon AG to get the PUK.
4.4 Download of new firmware when starting up

Download possible new firmware version from the BATLOGGER-Homepage www.batlogger.com and copy it to the SD card.

"Power Off" The BATLOGGER is switched off with new firmware, contained in file FWxxx.BL, on the inserted SD card.

Start up the BATLOGGER by simultaneously pressing both keys [].

As in "normal" startup, the BATLOGGER's serial number is shown, and the version of the installed firmware revision appears.

During initialisation of the SD card, a firmware "FWxxx.BL" is found on the SD card, which does not correspond to the installed firmware version on the BATLOGGER.

The found firmware revision "FWxxx.BL" is indicated. After pressing [] the new firmware will be loaded into the BATLOGGER.

When pressing Menu the firmware download can be skipped.

The size of the read software will be shown shortly during programming.

After loading of the new firmware, the BATLOGGER needs to be restarted. Start the BATLOGGER again by simultaneously pressing both keys [] if it does not reboot by itself.

As in "normal" startup, the BATLOGGER's serial number is shown, and the version of the installed firmware revision appears.

During initialisation of the SD card, a firmware is found on the SD card, which does correspond to the installed firmware version on the BATLOGGER.

The firmware in the BATLOGGER is verified against the version stored on the SD card, as long as the same same firmware version is present there. Pressing the key [] will erase the firmware on the SD card.

If a parameter file "BatPars.xml" exists on the SD card, the BATLOGGER reads the contained parameter values. Without "BatPars.xml" the BATLOGGER works with internal parameter values, stored in "CMOS" from previous recordings. Exception from this rules: When starting up the BATLOGGER the first time after a firmware download, default parameters are loaded! An "empty" "BatPars.xml" file (containing just <BatPars></BatPars>) elicits the same.

The BATLOGGER automatically switches to "Start Record?" in the main menu.
5 Record (bat calls)
- Recording with automatic and manual trigger
- Continuous recording
- Recording in preset time windows

5.1 Manual Trigger (Triggering recording by keystroke)
Proceed with key [Menu] in the main menu to "Start Record".

In the setup menu, the trigger mode (TRIG_MODE) has to be set to 0 = Manual (see page 22).

If no valid GPS time is available, the BATLOGGER asks for confirmation of the start of the recording without GPS data. With the key [Menu], the recording mode is initiated.

With the key [Menu] starting of recording will be cancelled.

Back to "Start Record"

During recording, the BATLOGGER indicates, that recording was triggered manually.

Pressing key [>] will start the recording.

Pressing key [>] will stop the recording. When not stopped manually, the recording will last up to the duration chosen for manual triggering (default =10 s).

The recorded data are stored as .wav file and the corresponding meta information as .xml file onto SD card.

After storage of both data files, the BATLOGGER will switch back to the menu "Sampling".

Manual recording can be cancelled (back to "Start Record") with the keys [Menu] and [Menu].

5.2 Continuous Trigger (Continuous recording)
Proceed with key [Menu] in the main menu to "Start Record".

In the setup menu, the trigger mode (TRIG_MODE) has to be set to 1 = Continuous (see page 22).

The BATLOGGER digitises data into RAM for the time preset as maximum continuous recording duration (max. 53.5 s = default). After this time it automatically switches to "Saving".

The recorded data are stored as .wav file and the corresponding meta information as .xml file onto SD card.

The storage time depends on the recording duration and the type of SD card used.

After storage, the BATLOGGER automatically returns to "Recording".
Continuous recording can be cancelled (back to "Start Record") with the keys [Menu] and [Menu].
5.3 Automatic Trigger ("Automatic" recording)

Proceed with key [Menu] in the main menu to "Start Record".

In the setup menu, the trigger mode has to be set to
2 = Crest Adv, 3 = Crest, 4 = Period, 5 = SD
(see page 22)

With the key [] to "Recording" mode (directly or after warning of missing GPS).

If no valid GPS time is available, the BATLOGGER asks
for confirmation of the start of the recording without GPS data.
With the key [] the recording mode is initiated.

The BATLOGGER is in sampling position and
awaits a trigger event (Crest or Period). In this state, the BATLOGGER continuously digitises
signals from the microphone into internal RAM,
circularly overwriting old data (ring buffer)
(The "5" on the display indicates present Crest factor)
Here, manual triggering is possible too: (
If a trigger event is detected, the BATLOGGER
displays the activity (peak frequency) and, if
Autorecord is enabled, switches to
"Recording" and stays in this mode, until
the trigger event disappears again and the
"post trigger time" has passed. The detected peak
frequency is displayed continuously.
Afterwards it switches to "Saving".

The recorded data, including the pre-trigger time,
are stored as *.wav file and corresponding meta
information as *.xml file onto SD card. Storage time
depends on the recording duration and SD card
used.
During storage, the frequency that triggered the event
is displayed. This is a first hint for species recognition.

After storage, the BATLOGGER automatically returns to "Sampling".
Automatic recording can be cancelled (back to "Start Record") with the keys [MENU] and [].
5.4 **Live monitoring**

Is the BATLOGGER in record mode and live monitoring function is enabled (see page 23) the ultrasonic sounds are output live on the speaker or headphones. Here, the bat calls are transformed into audible range after the mixer-principle (heterodyne). The volume can be adjusted during operation.

The are two methods to use the live monitoring:

- **Automatic**
 The mixer is adapted automatically and continuously to the currently detected frequency of the calling bat.
 Reset frequency: With the `key` the mixer frequency can be reset to 48kHz at any time. This is handy to minimize noise or feedback loops that can occur at low frequencies.
 Squelch: To improve the hearing experience, an automatic muting/unmuting (squelch) can be configured (see chapter 7.2). The output is muted as long as no trigger event is detected.

- **Manual**
 The mixer frequency can be set manually (see below). When the frequency is set to 0, the device switches to automatic mode and back to manual when changed again.

5.5 **Menu functions in record mode**

The key `Menu` in the record mode switches between the functions.

- **Exit record**
 With the `key` the last recording can be processed, e.g. played, directly.
 The “Process File” menu is loaded with the last recording selected.
 See page 19 for information regarding file processing.
 After leaving “Process File” menu recording mode is continued.

 ![Menu functions in record mode diagram](image-url)
5.6 Information displayed in record mode

The top two lines of the display shows different information, depending on the configured display mode (only available on devices with 3-line display).

DISPLAY_MODE = “Auto All”

The top two lines of the display shows different information screens in cycle:

| Date/Time, Free SD card memory, Nbr. of recordings. |
| Serial number, temperature, last detected frequency, battery status. |

| GPS/Location information. |
| Information screens cycle in 1s intervals. |

DISPLAY_MODE = “Auto Rec”

The top two lines of the display shows most important recording information permanently. Temperature, SD card and GPS information is displayed in cycle in 1s intervals:

| Time, temperature, battery status |
| Last recording, last trigger frequency |

| Time, SD card storage % used, battery status |
| Last recording, last trigger frequency |

| Time, GPS status information, battery status |
| Last recording, last trigger frequency |

DISPLAY_MODE = “Auto GPS”

The top two lines of the display shows most important location information permanently. Temperature, recording and SD card information is displayed in cycle in 1s intervals:

| Time, temperature, battery status |
| No GPS location fix yet |

| Time, recording count, battery status |
| GPS satellites in view but still no location fix yet |

| Time, last trigger frequency, battery status |
| GPS satellites used for 3D location, location accuracy |

| Time, SD card storage % used, battery status |
| current location coordinates |
DISPLAY_MODE = “Custom”

The information displayed can be freely configured by the user. To change this configuration, the BATPARS-Editor software must be used (see chapter 3.2).

The format of the two top lines can be setup to fit your needs. Two string parameters (see chapter 7.2) are used to define the format of each line. For each information field, a two digit code is used as a placeholder. To separate the fields, any or no characters can be used.

The syntax is as follows (parameters in brackets {} are optional):

\(\text{SEPARATOR}\{\text{FIELDCODE}\}\text{SEPARATOR}\{\text{FIELDCODE}\} \ldots \)

SEPARATOR none to multiple non-numeric ASCII characters, except ‘<’, ‘>’

FIELDCODE Two digit field code from the following table:

<table>
<thead>
<tr>
<th>FieldCode</th>
<th>Description</th>
<th>Format</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Date</td>
<td>DD.MM.YYYY</td>
<td>10</td>
</tr>
<tr>
<td>02</td>
<td>Time</td>
<td>HH:MM</td>
<td>5</td>
</tr>
<tr>
<td>03</td>
<td>Temperature [°C]</td>
<td>123</td>
<td>3</td>
</tr>
<tr>
<td>04</td>
<td>Battery status</td>
<td>CB</td>
<td>2</td>
</tr>
<tr>
<td>07</td>
<td>Time with seconds</td>
<td>HH:MM:SS</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Last trigger freq [kHz]</td>
<td>123</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Rec count since start</td>
<td>1234</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Last recording file</td>
<td>20001234</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>Last recording number</td>
<td>1234</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>SD card free space [GB]</td>
<td>12.3</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>SD card % used</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Last Recording time</td>
<td>HH:MM:SS</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>GPS status short</td>
<td>3D</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>GPS status long</td>
<td>NF 10SV</td>
<td>7</td>
</tr>
<tr>
<td>22</td>
<td>Location WGS84/CH1903</td>
<td>+12.123,+123.123</td>
<td>16</td>
</tr>
<tr>
<td>23</td>
<td>GPS speed/heading/altitude</td>
<td>NE 1.2km/h 123m</td>
<td>16</td>
</tr>
</tbody>
</table>

Examples:

```
DMCUSTOM_L1: 02 03°C 11
DMCUSTOM_L2: 10kHz #12

DMCUSTOM_L1: 10kHz SD:15% 04
DMCUSTOM_L2: #12 02

DMCUSTOM_L1: 11 14G 2004
DMCUSTOM_L2: 22
```
5.7 Delayed recording (Recording in time windows)

Proceed with key Menu in the main menu to "Start Record"

If a time window is defined in the “Setup”, and at least 1 day is activated, the BATLOGGER will start directly into "Sleep" mode. If preset starting time has already passed, sampling immediately starts.

With the key to "Recording" mode (directly or after warning of missing GPS).

If no valid GPS time is available, the BATLOGGER asks for confirmation of the start of the recording without GPS data. With the key, the recording mode is initiated.

The dark display indicates the sleep mode and the "wakeup time". After wakeup normal recording operation resumes with the pre-chosen trigger mode until the end of the set time window.

Sleep-Mode can be cancelled with the key (confirmation: "Aborted by User")

The time windows can be configured flexibly. The times can also be set dynamically by the position of the sun (sunrise and sunset).

Example:
- Nr. Days = 2
- T1 Start = 20:30 (Sunset) T1 Stop = 01:30
- T2 Start = 04:00 T2 Stop = 07:30 (Sunrise + 15min)

5.8 Interval recording (Recording in intervals)

As with time delayed recording time windows have to be defined and a number of days must be set. When also a recording interval is entered, then the BATLOGGER switches to record mode at the start time, but only for a single recording or max. for one minute.

Then further recordings are blocked for the programmed number of minutes ("RecIntvl" / default = 0 = off). This is followed by another record mode. This interval operation continues to the end of the time window. For this interval operation the various trigger modes can be used.

Example:
- Rec Intervall = 3
6 Process (Playback, analyse and erase stored wav files)

Proceed with key [Menu] in the main menu to "Process File".

(Changing Info-Line)
Process File? >

With key [>] into the submenu of "Process File".

6.1 Choose folder (if used)

Select Folder: BLxxxxxxxx <>
Last used folder is displayed
Choose a folder with the keys [<] [>]
Proceed to "Open folder" with the key [Menu]

Fold: BLxxxxxxxx
Open folder? >
Open folder with the key [>]

Select File:
#xxxxxxxx.wav <>
Choose recording, see below

Fold: BLxxxxxxxx
Delete folder? >
Delete folder with the key [>]
CAUTION: All data in the folder will be deleted.
Confirm deletion by simultaneously pressing the keys [<] [>]
or cancel with the key [Menu]

Delete folder? <> to confirm

Exit Process? >
Exit the submenu “Process File” with the key [>]
6.2 Choose Recording

The last saved file is shown. Selection of a different file with the keys [k] [m].
Proceed to “Play” and “Analyse” with the key [Menu].

6.3 Play Mixer

Start playback the recording with the key [m].

The file is loaded from the SD card, the frequency read from the XML, or if not available, asked for input.

The file is played in the mixer mode with its saved trigger frequency.
The volume can be changed with the keys [k] [m] (Range: 0 – 9, Default: 5)

6.4 Play Pitch

Start playback the recording with the key [m].

The file is loaded from the SD card

The file is played in the pitch mode with the pitch selected in the “Setup”.
The volume can be changed with the keys [k] [m] (Range: 0 – 9, Default: 5)

6.5 Play All

Start playback of all recordings with the key [m].

The file is loaded from the SD card and played with the preset mode. After finishing the next (higher #) file is loaded and played. After reaching the highest #, the first file (lowest #), will be read and played and so forth (endless loop). The output volume can be set (see above) and the # of the played file is indicated.

Cancel the play mode with the key [Menu].
6.6 Analyse

"Analyse" the recording with the key ➤.

With the keys < ➤ different recording details can be displayed.

Cancel this submenu with the key ➤.

6.7 Delete (Delete recordings)

Delete a single file with key ➤.

Confirm deletion by simultaneously pressing the keys < ➤ or cancel with the key Menu.

Exit from the submenu "Process File" to the main menu "Start Record" or "Select folder" by pressing the key ➤.

Proceed in the submenu "Process File" with key Menu (back to menu point "Select File").
7 Setup (Settings)

Set parameters for
• Recording time windows (delays), triggers
• GPS, backlight, time zone and audio
• SD card and parameter file

7.1 Operation

Proceed with key [Menu] in the main menu to "Setup?"

(Changing Info-Line)
Setup? > [Menu] «»

Setup X/Z
Submenu X > [Menu] «»

Parameter = X < > [Menu]

Parameter = 3<4>.3 [Menu] «»

... [Menu]

Setup Y/Z
Submenu Y > [Menu]

With the key [Menu] «» into the submenu of "Setup".

With the key [Menu] «» into the submenu or with the key [Menu] to the next menu item or with the key [Menu] to the last menu item.

With the keys [Menu] «» value can be changed.

With the key [Menu] to the next parameter.

For larger number values (e.g. coordinates) single digits can be increased/decreased with the [Menu] «» keys. Go to the next digit with the key [Menu].

Complete the entry with "«".

To exit the setup menu the last menu item ("Exit Setup") must be selected.
7.2 Setup-Menu

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup 1/8 Delay Record</td>
<td>Timing (delay) of the recordings (Program 1 or 2 time slots per day for a programmed number of days)</td>
<td></td>
</tr>
<tr>
<td>Nr. Days</td>
<td>Enter the number of days (0..999) on which the time windows (one or both) are performed. 0 = time control (delay) disabled.</td>
<td>0</td>
</tr>
<tr>
<td>Example: 30</td>
<td>For a maximum of 30 days, recording is performed during the configured time slot (see below)</td>
<td></td>
</tr>
<tr>
<td>T1 Start Mode</td>
<td>Mode 1. start time
0 = Fixed: Fixed time
1 = Sunset: Time of sunset at location of LOC_LAT/LOC_LON of the respective day
2 = Sunrise: Time of sunrise at location of LOC_LAT/LOC_LON of the respective day</td>
<td>0</td>
</tr>
<tr>
<td>T1 Start</td>
<td>1. start time
Depending on the mode: time or difference (in 15 minute steps)</td>
<td>00:00</td>
</tr>
<tr>
<td>Example: Fixed 20:30</td>
<td>Start 1. time window at 20:30</td>
<td></td>
</tr>
<tr>
<td>T1 Stop Mode</td>
<td>Mode 1. stop time
0 = Fixed: Fixed time
1 = Sunset: Time of sunset at location of LOC_LAT/LOC_LON of the respective day
2 = Sunrise: Time of sunrise at location of LOC_LAT/LOC_LON of the respective day</td>
<td>0</td>
</tr>
<tr>
<td>T1 Stop</td>
<td>1. stop time
Depending on the mode: time or difference (in 15 minute steps)</td>
<td>00:00</td>
</tr>
<tr>
<td>Example: Fixed 01:00</td>
<td>Stop 1. time window at 01:00</td>
<td></td>
</tr>
<tr>
<td>T2 Start Mode</td>
<td>Mode 2. start time
0 = Fixed: Fixed time</td>
<td>0</td>
</tr>
<tr>
<td>T2 Start</td>
<td>2. start time</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depending on the mode: time or difference (in 15 minute steps)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fixed 00:00 = 2. time slot disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: Sunrise -02:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start 2. time window 2:30h before sunrise</td>
<td></td>
</tr>
<tr>
<td>T2 Stop Mode</td>
<td>Mode 2. stop time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 = Fixed: Fixed time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Sunset: Time of sunset at location of LOC_LAT/LOC_LON of the respective day</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Sunrise: Time of sunrise at location of LOC_LAT/LOC_LON of the respective day</td>
<td></td>
</tr>
<tr>
<td>T2 Stop</td>
<td>2. stop time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depending on the mode: time or difference (in 15 minute steps)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fixed 00:00 = 2. time slot disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: Sunrise +00:30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stop 2. time window 30min after sunrise</td>
<td></td>
</tr>
<tr>
<td>Rec Intervall</td>
<td>Interval time between single recordings (in one minute steps)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>After a recording at least 3 minutes no new recording is started (triggered)</td>
<td></td>
</tr>
</tbody>
</table>
Setup 2/8

Trigger

<table>
<thead>
<tr>
<th>Trigger settings</th>
<th>Set the trigger mode, that is how a recording is started</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIG_MODE:</td>
<td>Choose trigger mode:</td>
</tr>
<tr>
<td>0 = Manual:</td>
<td>start and stop recording need manual key input</td>
</tr>
<tr>
<td></td>
<td>(autom. stop after “MANTRIG MAXTIME”)</td>
</tr>
<tr>
<td>1 = Continuous:</td>
<td>continuous recording of blocks of default 53 seconds duration</td>
</tr>
<tr>
<td></td>
<td>(interrupt for storage).</td>
</tr>
<tr>
<td>2 = Crest Adv:</td>
<td>automatic triggering with Crest factor, enhanced call detection and reduce noise sensitivity (manual triggering possible to override automatism)</td>
</tr>
<tr>
<td>3 = Crest:</td>
<td>automatic triggering with Crest factor</td>
</tr>
<tr>
<td></td>
<td>(manual triggering possible to override automatism)</td>
</tr>
<tr>
<td>4 = Period:</td>
<td>automatic triggering with Period algorithm</td>
</tr>
<tr>
<td></td>
<td>(manual triggering possible to override automatism)</td>
</tr>
<tr>
<td>5 = SD:</td>
<td>automatic triggering on periodic signal</td>
</tr>
<tr>
<td></td>
<td>(manual triggering possible to override automatism)</td>
</tr>
<tr>
<td>TRIG_AUTOREC:</td>
<td></td>
</tr>
<tr>
<td>0 = Manual:</td>
<td>A trigger event does not start recording. The recording must be started and stopped manually, but the trigger frequency is displayed.</td>
</tr>
<tr>
<td>1 = Auto:</td>
<td>A trigger event automatically starts the recording and recording automatically stops when trigger conditions are no longer met.</td>
</tr>
<tr>
<td>POSTTRIG_IGNORE_S</td>
<td>Ignore same frequency for n seconds after last recording 0..3600 (0 = off)</td>
</tr>
<tr>
<td>Example: 60</td>
<td>After a recording was made, for the next 60s trigger events with the same frequency (+/- 5 kHz) are ignored and no new recording is started. Other frequencies trigger as usual.</td>
</tr>
</tbody>
</table>

TRIG_MODE:	**	**Min. Crest**	Minimal Crest factor as trigger condition
	**	**Lower values trigger easier**	
	**	**Min. F**	Minimal frequency for trigger condition in kHz
	**	**Max. F**	Maximal frequency for trigger condition in kHz

<p>| TRIG_MODE: | **| Min. Crest | Minimal Crest factor as trigger condition |
| | **| Lower values trigger easier | |
| | **| Min. RMS | Factor for minimal effective value as trigger condition |
| | **| Lower values trigger easier |
| | **| Min. Peak | Factor for minimal amplitude as trigger condition |
| | **| Lower values trigger easier |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIG_MODE: ProdVal</td>
<td>Period-Trigger: ProdVal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher values improve triggering at low frequencies, but also insects, and vice versa.</td>
<td></td>
</tr>
<tr>
<td>TRIG_MODE: DivVal</td>
<td>Period-Trigger: DivVal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher values improve triggering at low frequencies, but also insects, and vice versa.</td>
<td></td>
</tr>
<tr>
<td>PRETRIG_TIME_MS</td>
<td>Pre-trigger length in ms</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Length ahead of the trigger event that is saved from the buffer to the recording file.</td>
<td></td>
</tr>
<tr>
<td>POSTTRIG_TIME_MS</td>
<td>Post-trigger length for automatically triggered recordings in ms</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>If no trigger event is detected during this time, the recording will be stopped.</td>
<td></td>
</tr>
<tr>
<td>AUTOTRIG_MAXTIME_MS</td>
<td>Maximal length for automatically triggered recordings in ms</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td>The recording is stopped when reaching maximal length even trigger event are detected.</td>
<td></td>
</tr>
<tr>
<td>MANTRIG_MAXTIME_MS</td>
<td>Maximal length for manually triggered recordings in ms</td>
<td>53500</td>
</tr>
<tr>
<td></td>
<td>The recording is stopped when reaching maximal length even if the stop key (\text{[x]}) is not pressed.</td>
<td></td>
</tr>
<tr>
<td>TRIG_NRBLOCKS</td>
<td>Number of blocks that must meet trigger criteria in order to trigger</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1..10</td>
<td></td>
</tr>
<tr>
<td>Setup 3/8 Audio</td>
<td>Audio settings</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
</tbody>
</table>
| **Volume** | Headphones/Speaker\(^{\text{a}}\) - Volume
0 = mute
9 = very loud
ATTENTION: Too high volume can cause hearing loss, particularly using the headphones | 2 |
| **Monitoring** | Live monitoring (mixer output) \(^{\text{a}}\)
0 = Off: Live monitoring disabled
1 = On Auto: Live monitoring enabled, frequency is set automatically
2 = On Manual: Live monitoring enabled, frequency must be set manually | 0 |
| **Squelch \(^{\text{a}}\)** | Automatic muting of live monitoring after \(n\) seconds, only if monitoring set to automatic.
0..60 (0 = Off)
Example: 3
If no trigger event happens for 3 seconds, the audio output is muted. On the next trigger event, it is unmuted automatically. | 0 |
| **PB Mode** | Playback mode
0 = Pitch: playback slowed down with PB Speed factor
1 = Mixer: playback mixed with peak frequency of the recording | 1 |
| **PB Speed** | Playback speed
1: real-time
2: half speed
etc.
Example: 10
The recordings are played slowed down 10 times (time expansion and frequency division). Thus the ultrasonic sounds are audible (e.g. 45 kHz -> 4.5 kHz)
The real-time playback enables the output of the original ultrasonic sounds. This can be useful for demonstration purpose for example. Pay attention to connect a speaker with appropriate ultrasound capability. | 10 |
| **Microphone-test mode** | Mode used when “Test Microphone” function is executed.
0 = Manual: Record the current (silent) spectrum and write it to the log file
1 = Automatic (tbd) | 0 |
| **Test Microphone** | Execute microphone test with selected mode (see above) | |

\(^{\text{a}}\) \(n\) is only relevant if Monitoring = On Manual.
Setup 4/8
Location / GPS

<table>
<thead>
<tr>
<th>Position and GPS settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Show Status</td>
<td>Displays the current status of GPS reception and information about the current location and the received satellites. Switch the displayed information with the keys [«] [»] or exit with the key [Menu].</td>
</tr>
<tr>
<td></td>
<td>• Fix status, approx. accuracy in meters (radius), actual position</td>
</tr>
<tr>
<td></td>
<td>• Height above sea level, speed and heading</td>
</tr>
<tr>
<td></td>
<td>• HDOP and VDOP</td>
</tr>
<tr>
<td></td>
<td>• Sunset and sunrise at actual location at today's date</td>
</tr>
<tr>
<td></td>
<td>• Satellites in view, SNR (S) and PRN (#) of the five strongest satellites (PRN Prefixes: P=GPS, L=GLONASS, A=Galileo)</td>
</tr>
<tr>
<td></td>
<td>• Distance and direction to position of LOC_LAT/LOC_LON</td>
</tr>
<tr>
<td>GPS Mode</td>
<td>Set position determination mode</td>
</tr>
<tr>
<td></td>
<td>0 = Off: position determination disabled</td>
</tr>
<tr>
<td></td>
<td>1 = On: position determination enabled</td>
</tr>
<tr>
<td></td>
<td>2 = On w/GPX track: position determination and track recording (GPX) enabled</td>
</tr>
<tr>
<td></td>
<td>3 = Off w/ManLoc: position determination disabled, position of LOC_LAT/LOC_LON is stored as recording position into the XML file</td>
</tr>
<tr>
<td></td>
<td>4 = Off w/StartLoc: position determination disabled, position of LOC_LAT/LOC_LON is updated when start recording mode and stored as recording position into the XML file</td>
</tr>
<tr>
<td>Example: 0</td>
<td>GPS off for the lowest possible power consumption or because reception is not possible, such as in caves.</td>
</tr>
<tr>
<td>Coord.Fmt</td>
<td>Coordinates display format to display current location</td>
</tr>
<tr>
<td></td>
<td>0 = WGS84: (e.g., 47.052804 / 8.257801)</td>
</tr>
<tr>
<td></td>
<td>1 = CH1903: (e.g., 662240 / 211632)</td>
</tr>
<tr>
<td>TZ</td>
<td>Set time zone</td>
</tr>
<tr>
<td></td>
<td>Deviation to UTC in hours</td>
</tr>
<tr>
<td></td>
<td>Example: +2 Daylight savings time in Zurich (CH)</td>
</tr>
<tr>
<td>GPS_INTERVAL</td>
<td>Interval of position determination in seconds</td>
</tr>
<tr>
<td></td>
<td>Lower values = more frequent position determination, higher power consumption</td>
</tr>
<tr>
<td></td>
<td>Higher values = less frequent position determination, lower power consumption</td>
</tr>
<tr>
<td>Set manual location</td>
<td>Enter manual location (coordinates)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>This location is used:</td>
</tr>
<tr>
<td></td>
<td>• To calculate sunset and sunrise</td>
</tr>
<tr>
<td></td>
<td>• As recording position in GPS mode 3 (Off w/Loc)</td>
</tr>
<tr>
<td></td>
<td>• To calculate distance and direction in the GPS status view</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOC_LAT</th>
<th>Latitude, in WGS84 or CH1903 (dep. Coord. Fmt)</th>
<th>47.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC_LON</td>
<td>Longitude, in WGS84 or CH1903 (dep. Coord. Fmt)</td>
<td>7.4</td>
</tr>
<tr>
<td>Set current location</td>
<td>The coordinates of the current position are stored as manual location</td>
<td></td>
</tr>
<tr>
<td>Reset module</td>
<td>Reset the GPS module to factory defaults. A reset may help if no position fix can be achieved even after a long time trying.</td>
<td></td>
</tr>
<tr>
<td>Setup 5/8 SD Card</td>
<td>SD card setup</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Folder_MODE</td>
<td>Store recording in folders</td>
<td></td>
</tr>
<tr>
<td>0 = None:</td>
<td>No folders used, all data is stored in the root folder of the SD card</td>
<td></td>
</tr>
<tr>
<td>1 = Daily:</td>
<td>Use a new folder daily (12:00 – 12:00): BLyyyymmdd</td>
<td></td>
</tr>
<tr>
<td>2 = Weekly:</td>
<td>Use a new folder weekly (Mo 12:00 – Mo 12:00): BLyyyWww</td>
<td></td>
</tr>
<tr>
<td>3 = Monthly:</td>
<td>Use a new folder monthly (1. 12:00 – 1. 12:00): BLyyyymm</td>
<td></td>
</tr>
<tr>
<td>4 = Every Start: New folder every time a recording session is started: BLyyyymmddhhmmss**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example: 1</td>
<td>Recordings (WAV, XML, GPX, KMZ) are stored into a separate folder each night</td>
<td></td>
</tr>
<tr>
<td>Folder “BL20130802” contains data of the night from 2. to the 3. August 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folder “BL20130803” contains data of the night from 3. to the 4. August 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etc.</td>
<td>The folder is changed each day at noon (12:00)</td>
<td></td>
</tr>
<tr>
<td>STATUS_MODE</td>
<td>BLWiFi status</td>
<td></td>
</tr>
<tr>
<td>0 = Off:</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>1 = On:</td>
<td>Enabled, BLWiFi can display the actual state if a connection is established</td>
<td></td>
</tr>
<tr>
<td>Write BATPARS</td>
<td>Write the current settings to the BATPARS.XML file</td>
<td></td>
</tr>
<tr>
<td>Delete BATPARS</td>
<td>Delete the BATPARS.XML file from the SD card</td>
<td></td>
</tr>
<tr>
<td>Format SD Card</td>
<td>Format the SD card</td>
<td></td>
</tr>
<tr>
<td>Delete all recordings, meta-data and files from the SD card. Only BATPARS.XML and BATREC.LOG files will not be deleted.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAUTION: All data on the SD card will be deleted. Make sure that you have made a backup.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test SD Card</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Setup 6/8
Miscellaneous

<table>
<thead>
<tr>
<th>Set Date/Time</th>
<th>Various settings</th>
</tr>
</thead>
</table>
| **TIMEMODE** | 0 = Manual: Date and time can be set manually
1 = Auto GPS: Date and time is set automatically on GPS reception |
| **Backlight value** | Set the display backlight brightness used during recording in %
0..100%
(except in recording mode, the display backlight is always bright; in sleep mode the light is always off) |
| **Display mode** | Set the display mode during recording mode
0 = Auto All: Cycle all information fields
1 = Auto Rec: Show: recording information, time, battery; cycle: temp., GPS, SD card
2 = Auto GPS: Show: location information time, battery; cycle: temp., #recs, SD card
3 = Custom: Setup displayed fields yourself (see chapter 5.6) |
| **Charger mode** | 0 = Charge always if power supply is plugged in
1 = Disconnect power supply (charging) during recording to minimize electrical noise |

Device Lock (Theft protection)

| **Device Lock Mode** | Change device lock mode and PIN
Device Lock Mode | Off: Device is always operable
On: Device is operable only after entering correct PIN (see also page 11) |
| **Device PIN** | PIN (Personal Identification Number) can be freely selected by the user and must be 4..6 digits.
PIN must be confirmed by entering it again.
ATTENTION: Write the PIN down and keep it in a secret and secure place. If the PIN is lost, the device must be unblocked with the PUK. Contact Elekon AG to get the PUK. |

Load Defaults

| **SETUP_DISABLED** | Disable setup menu
0 = Setup menu is accessible
1 = Setup menu is locked, no configuration changes can be done on the device |

Setup 7/8
Tools

<table>
<thead>
<tr>
<th>Various Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Batcounter</td>
</tr>
</tbody>
</table>

Setup 8/8
Exit Setup

<table>
<thead>
<tr>
<th>Exit Setup menu and save changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save to BATPARS</td>
</tr>
</tbody>
</table>
| Save to int.Mem | Write settings to internal memory and exit Setup menu
If the BATPARS.XML file exists on the SD card, those settings will be loaded on the next start of the BATLOGGER. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Discard changes</td>
<td>Discard changes and exit Setup menu</td>
</tr>
</tbody>
</table>
8 Recordings and Files

8.1 The audio data file "xxxxxxx.wav" (e.g. 10160435.wav)

After completion of recording into internal RAM, the stored data is written as standard audio WAVE file onto the inserted SD card with the file name "xxxxxxx.wav". (e.g. 10160435.wav)
The first four digits identify the serial number of the BATLOGGER and the following four digits exhibit the consecutive number of the recorded files on the inserted SD card.
The above example therefore identifies the 435th recording on this SD card of the BATLOGGER with the serial number 1016.

The *.wav file contains all the uncompressed raw measurement values of the analogue to digital converter and a "header", which is specific to the wave format. This "header" contains, amongst other information, the sampling rate of the digitiser. Additionally, the file contains a further sub-chunk for GUANO metadata (see below).

Concurrent with these recorded wave data, a file containing meta information about the recording (see below) is saved to SD card with the name *.xml (in our example 10160435.xml).

The recordings can optionally be stored into subfolders (daily, weekly, monthly, every start). See also on page 23.

The standard *.wav files can be read and opened with general audio software or bat specific sound analysis programs. It may be displayed as time signal or spectrogram. The latter offers best possibilities to identify species.

Elekon AG offers a sophisticated analysis software for Windows PCs: BatExplorer. It can be found on the included SD card or can be downloaded from www.batlogger.com.

WSL offers BatScope, a Mac or Windows software tool for management and review of recorded data and automatic species classification: www.batscope.ch.

8.1.1 GUANO metadata

GUANO is a device independent standard for storing bat detector metadata directly in the *.wav file. See https://guano-md.org for further information.
The guano sub-chunk is placed at the end of the file. BATLOGGER specific data is stored under the "BATLOGGER" namespace.

Example:
GUANO|Version: 1.0
Make: BATLOGGER
Model: M
Firmware Version: 2.6.0
Serial: 3101
Original Filename: 31010003.wav
Length: 7.02
Samplerate: 312500
Temperature Ext: 23
BATLOGGER|Trigger|Frequency: 52
8.2 Meta data file "xxxxxxxxxxx.xml" (Bsp. 10160435.xml)

With every saved "xxxxxxxxx.wav" audio file, an additional information file "xxxxxxxxxxx.xml" is saved, following the same numbering convention, and containing various meta information on recording time, date, location, temperature and the BATLOGGER parameter settings.

Example of the content of an *.xml meta information file:

```xml
<BatRecord>
  <Firmware>2.0</Firmware>
  <SN>1016</SN>
  <Filename>10160435.wav</Filename>
  <DateTime>28.04.2010 21:31:29</DateTime>
  <Duration>2 Sec</Duration>
  <Samplerate>312500 Hz</Samplerate>
  <Temperature>26 C</Temperature>
  <BattVoltage>3.92 V</BattVoltage>
  <Valid>yes</Valid>
  <Position>47.056358 8.251432</Position>
  <Altitude>475.299988 m</Altitude>
  <CH1903>661752/212022</CH1903>
  <HDOP>1.140000</HDOP>
  <GPSTimestamp>19:31:20+2h</GPSTimestamp>
  <GPSAge>9 Sec</GPSAge>
  <TRIG_MODE>Crest</TRIG_MODE>
  <Version>V1.0</Version>
  <Event>AutoTriggerd</Event>
  <PRETRIG_TIME_MS>500</PRETRIG_TIME_MS>
  <POSTTRIG_TIME_MS>1000</POSTTRIG_TIME_MS>
  <TRIG_PAR0>6</TRIG_PAR0>
  <TRIG_PAR1>2</TRIG_PAR1>
  <TRIG_PAR2>2</TRIG_PAR2>
  <TRIG_PAR3>12</TRIG_PAR3>
  <TrigValue0>6</TrigValue0>
  <TrigValue1>40</TrigValue1>
  <TrigValue2>263</TrigValue2>
  <TrigValue3>44</TrigValue3>
</BatRecord>
```

The .xml info file contains the following information:

- The firmware of the BATLOGGER was version 2.0
- The BATLOGGER's number was 1016 (Serial Number)
- The accompanying WAVE file is "10160435.wav"
- The recording happened on April, 28. 2010 at 21:31:29
- The recording duration is 2 seconds
- The sampling rate was 312500 samples per second
- The temperature when recording was 26° C
- The battery voltage amounted to 3.92 V
- The GPS information was valid
- Lat. & longitude of the rec. position in degrees (WGS84): 47°5.3' N, 8°15.3' E
- Elevation above sea level was 475.3 m
- The Swiss coordinates are 661752 / 212022 m (CH1903)
- The horizontal precision amounts to 1.14 (lower=better)
- GPS time was 19:31:20 UTC + 2 h. for local time
- The GPS “age” was 9 seconds (last positional reading)
- The trigger mode was set to "Crest"
- The version of the triggering algorithm was V1.0
- The triggering was automatic, thus with the Crest routine
- Before the first trigger occurred, 0.5 s were recorded
- After the last trigger event, 1 s was additionally recorded
- The parameter "min.Crest" was set to 6
- The parameter "min.RMS" was set to 2
- The parameter "min.Peak" was set to 2
- Trigger cutoff freq. was set to > than 12x1.22kHz=15 kHz
- Triggering Value of parameter TRIG_PAR0
- Triggering Value of parameter TRIG_PAR1
- Triggering Value of parameter TRIG_PAR2
- Triggering Value of parameter TRIG_PAR3
8.3 Parameter file "BATPARS.xml"

With any computer, the default values and settings of the BATLOGGER can be predefined and written to the parameter file. The file is stored on the SD card with the name "BatPars.xml". When the BATLOGGER is starting up, the file is read from SD card and the corresponding settings activated. Settings, that are changed interactively on the BATLOGGER are also saved to the "BATPARS.xml" file:

Exit Setup > Save to BATPARS

Optional changes can be applied until the next on/off cycle of the BATLOGGER only:

Exit Setup > Save to internal Memory

When formatting an SD card, the file "BATPARS .xml" will be read from SD card into the internal memory before formatting, and written back to SD card after formatting has finished.

Without the file "BATPARS .xml" on the SD card, the BATLOGGER starts with its internal "CMOS" parameters, which correspond to the values last set. When starting the BATLOGGERS up after a firmware update, the default parameters will be loaded.

To change the parameters conveniently on the computer the BATPARS Editor software can be executed and the "BATPARS.xml" file from the SD card can be opened. The parameters can now be adjusted to own preferences or factory settings can be restored. See also page 9.

The parameters can also be changed with a text editor software. The following example of a "BATPARS .xml" file shows the default values:

```xml
<?xml version="1.0"?>
<Setup>
  <Setup_Disabled>0</Setup_Disabled>
  <TimeZone>2</TimeZone>
  <TimeMode>1</TimeMode>
  <BackColor>10</BackColor>
  <Display_Mode>0</Display_Mode>
  <Charger_Mode>1</Charger_Mode>
  <Folder_Mode>1</Folder_Mode>
  <Status_Mode>0</Status_Mode>
  <GPS_Mode>1</GPS_Mode>
  <GPS_Format>1</GPS_Format>
  <GPS_Interval>10</GPS_Interval>
  <Loc_LAT>472000</Loc_LAT>
  <Loc_LON>74000</Loc_LON>
  <MicTest_Mode>0</MicTest_Mode>
  <Playback_Speed>10</Playback_Speed>
  <Playback_Vol>2</Playback_Vol>
  <Playback_Mode>0</Playback_Mode>
  <Monitoring>1</Monitoring>
  <Squelch>0</Squelch>
  <PreTrig_Time_MS>500</PreTrig_Time_MS>
  <PostTrig_Time_MS>1000</PostTrig_Time_MS>
  <AutoTrig_MaxTime_MS>20000</AutoTrig_MaxTime_MS>
  <ManTrig_MaxTime_MS>53500</ManTrig_MaxTime_MS>
  <PostTrig_Ignore_S>0</PostTrig_Ignore_S>
  <Trigger_Mode>2</Trigger_Mode>
  <Trigger_AutoRec>1</Trigger_AutoRec>
  <Trigger_NRBlocks>2</Trigger_NRBlocks>
  <Trigger_PAR0>6</Trigger_PAR0>
  <Trigger_PAR1>2</Trigger_PAR1>
  <Trigger_PAR2>2</Trigger_PAR2>
  <Trigger_PAR3>6</Trigger_PAR3>
  <Trigger_PAR4>8</Trigger_PAR4>
  <Trigger_PAR5>20</Trigger_PAR5>
  <Trigger_PAR6>7</Trigger_PAR6>
  <Trigger_PAR7>15</Trigger_PAR7>
  <Trigger_PAR8>155</Trigger_PAR8>
  <Trigger_PAR9>5</Trigger_PAR9>
  <RecdLY_NRdays>0</RecdLY_NRdays>
  <RecdLY_T1StartMode>0</RecdLY_T1StartMode>
  <RecdLY_T1StopMode>0</RecdLY_T1StopMode>
  <RecdLY_T2StartMode>0</RecdLY_T2StartMode>
  <RecdLY_T2StopMode>0</RecdLY_T2StopMode>
  <RecdLY_T1Start>00:00</RecdLY_T1Start>
  <RecdLY_T1Stop>00:00</RecdLY_T1Stop>
  <RecdLY_T2Start>00:00</RecdLY_T2Start>
  <RecdLY_T2Stop>00:00</RecdLY_T2Stop>
  <RecIntVl_MIn>0</RecIntVl_MIn>
</Setup>
```

* Identifies parameters, that can only be set by changing the values in the file "BatPars.xml". They are not accessible through the setup menu.
8.4 Log file "BATREC.log"

When in use, the BATLOGGER automatically writes a log file “BATREC.log” in text format to the SD card. Every text line is preceded by the serial number (SN) of the BATLOGGER writing the log. When changing the SD card to another logger, or removing it and re-inserting it again, the log file will be extended and new log information appended to the “BATREC.log” file. Deleting WAVE files through the menu of the BATLOGGER does not affect the “BATREC.log” file.

However, formatting the SD card will also erase the “BATREC.log” file!

In the file “BATREC.log”, all activities of the BATLOGGER are listed chronologically. Events like starting up or shutting down the BATLOGGER are logged accurate to the minute, while logging of the normal recording activity only happens every 15 minutes.

SN1021 22.07.2009 21:37 - power on
 BATLOGGER #1021 was switched on

SN1021 22.07.2009 21:37 - record mode started
 Recording started

SN1021 22.07.2009 21:37 - record mode stopped by user
 Recording cancelled by user

SN1021 22.07.2009 23:45 - listening T = 21 VB = 3.912
 BATLOGGER is in recording mode and waiting for a triggering event, with indication of temperature (21°C) and battery voltage (3.912V)

SN1021 23.07.2009 00:00 - listening T = 20 VB = 3.908

SN1021 23.07.2009 00:15 - listening T = 19 VB = 3.905

SN1021 23.07.2009 03:00 - listening T = 17 VB = 3.891

SN1021 23.07.2009 03:00 - listening T = 17 VB = 3.886

SN1021 23.07.2009 03:15 - listening T = 16 VB = 3.882

SN1021 23.07.2009 03:30 - listening T = 16 VB = 3.877

SN1021 23.07.2009 03:45 - listening T = 16 VB = 3.871

SN1021 23.07.2009 04:00 - listening T = 15 VB = 3.865

SN1021 23.07.2009 04:15 - listening T = 15 VB = 3.860

SN1021 23.07.2009 04:30 - listening T = 15 VB = 3.856

SN1021 23.07.2009 04:45 - listening T = 15 VB = 3.852

SN1021 23.07.2009 05:00 - listening T = 15 VB = 3.847

SN1021 23.07.2009 05:15 - listening T = 15 VB = 3.843

SN1021 23.07.2009 05:30 - listening T = 16 VB = 3.838

SN1021 23.07.2009 05:45 - listening T = 16 VB = 3.833

SN1021 23.07.2009 05:55 - shutdown
 The BATLOGGER was shut down

Example of a quick startup of the logger with the manual triggering and cancelling of a recording:

SN1021 25.07.2009 19:47? - power on

SN1021 25.07.2009 19:47? - record mode started

SN1021 25.07.2009 19:47? - record mode stopped by user

Example of another message that may appear:

In interval mode, the pausing will be indicated with the following entry:

SN1021 27.07.2009 02:45 - snooze
8.5 **Google-Earth file "route.kml"**

When in use, the BATLOGGER automatically stores a Google-Earth file with the name "route.kml" onto the SD card. The folder used, depends on the FOLDER_MODE setting. It will be extended with every additional recording. If the SD card is used repeatedly (eject, reinsert) the "route.kml" will not be erased, but extended if available.

Deleting WAVE files through the menu of the BATLOGGER does not affect the "route.kml" file. However, formatting the SD card will also erase the "route.kml" file!

In the file "route.kml", all recording positions of the BATLOGGER with "valid" GPS data are listed chronologically.

8.6 **Track file "xxxxxxxx.gpx" (e.g. 10160435.gpx)**

Optionally, the track travelled can be recorded. This requires that the GPS mode is set to 2.

In this mode, a GPX file with the current record number is created (e.g. 10160435.gpx) and then the current GPS position is recorded continuously. The folder used, depends on the FOLDER_MODE setting. The sampling range can be set using the _GPS_INTERVAL_ parameter.

The track recording is stopped when the recording mode is exited. When recording mode is restarted a new GPX file is created, or, if no audio recording was made since last start, the existing GPX file is continued.

The GPX file contains the route taken as so-called track. It is based on the XML standard and can be opened with Google Earth for example or most major GIS software.

8.7 **Activity statistics file "BATSTAT.csv"**

When in recording mode, the BATLOGGER automatically stores a statistics CSV file (Comma separated values) with the name "BATSTAT.csv" onto the root folder of the sd card. The file is extended with new data if already available.

Each hour, a new line is added to the file, containing the number of recordings made in the last hour. Additionally, temperature and battery data is stored.

To use this data, load the file in a spreadsheet application (Excel).

| Timestamp, Status, #Recordings, Temperature °C, Battery [V], Charge [V], Charge [A] |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 03.06.2018 21:00:00, Listening, 22, 26, 4.15, 11.80, 0.47 |
| 03.06.2018 22:00:02, Listening, 154, 27, 4.15, 11.80, 0.36 |
| 03.06.2018 23:00:00, Recording, 131, 26, 4.15, 11.80, 0.24 |
| 04.06.2018 00:00:00, Listening, 15, 25, 4.15, 11.80, 0.23 |
| 04.06.2018 01:00:00, Listening, 24, 24, 4.15, 11.76, 0.22 |
| 04.06.2018 02:00:00, Listening, 6, 23, 4.15, 11.76, 0.21 |
| 04.06.2018 03:00:00, Listening, 7, 21, 4.15, 11.76, 0.21 |
| 04.06.2018 04:00:00, Listening, 5, 21, 4.15, 11.80, 0.21 |
| 04.06.2018 05:00:00, Listening, 13, 21, 4.15, 11.80, 0.21 |

8.8 **Batcounter "BATCOUNT.csv"**

A simple bat counter can be used to record bat passings or inbound/outbound activity.

To use it, go to Setup→Tools→Start Batcounter

(Changing Info-Line) <I: 3 O: 12> Press the ▶ key to count outbound or the ◄ key to count inbound bats.

Press the Menu key to stop the counter and display the summary.

Press ▶ or ◄ to switch summary display. Press Menu to leave it.

For each count, an entry is written to the "BATCOUNT.csv" file in the root folder containing timestamp, direction/state, actual count, temperature and location if available.

| Timestamp, State, Count, Temperature °C, Latitude [WGS84], Longitude [WGS84], Altitude [m] |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 09.09.2018 19:26:20, Start, 0, 26, 47.053330, 8.257547, 467.9 |
| 09.09.2018 19:26:23, Out, 1, 26, 47.053330, 8.257547, 467.9 |
| 09.09.2018 19:26:24, Out, 3, 26, 47.053330, 8.257547, 467.9 |
| 09.09.2018 19:26:25, In, 1, 26, 47.053330, 8.257547, 467.9 |
| 09.09.2018 19:26:27, Out, 4, 26, 47.053330, 8.257547, 467.9 |
| 09.09.2018 19:26:29, Out, 5, 26, 47.053330, 8.257547, 467.9 |
| 09.09.2018 19:26:30, Out, 6, 26, 47.053330, 8.257547, 467.9 |
| 09.09.2018 19:26:32, End, 4, 26, 47.053330, 8.257547, 467.9 |
9 Technical specifications

<table>
<thead>
<tr>
<th>Dimension</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (B x H x T)</td>
<td>80 x 155 x 38 mm</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>370g</td>
<td></td>
</tr>
<tr>
<td>Size of case (B x H x T)</td>
<td>330 x 280 x 75 mm</td>
<td></td>
</tr>
</tbody>
</table>

Power

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>3.7V 4600 mAh Li-Ion battery (internal)</td>
<td></td>
</tr>
<tr>
<td>Power consumption when recording</td>
<td>approx. 230 mA</td>
<td></td>
</tr>
<tr>
<td>Power consumption in sleep mode</td>
<td>approx. 10 mA</td>
<td></td>
</tr>
<tr>
<td>Operating time (recording)</td>
<td>approx. 18 h per battery charge</td>
<td></td>
</tr>
<tr>
<td>Operating time (sleep mode)</td>
<td>approx. 400 h per battery charge</td>
<td></td>
</tr>
</tbody>
</table>

Charger / Charging

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Charger (included)</td>
<td>Wall power supply 12 VDC (100-240 VAC)</td>
<td></td>
</tr>
<tr>
<td>Charging socket (voltage, capacity)</td>
<td>9 V DC to 15 V DC, min. 5 W</td>
<td></td>
</tr>
<tr>
<td>Battery charge</td>
<td>I-/U-charge with 750 mA / 4.2 V</td>
<td></td>
</tr>
<tr>
<td>Charging duration</td>
<td>approx. 7 h (full charge)</td>
<td></td>
</tr>
</tbody>
</table>

Recording ultrasound

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling rate</td>
<td>312.5 kHz</td>
<td></td>
</tr>
<tr>
<td>Amplitude resolution</td>
<td>16 bits (ADC)</td>
<td></td>
</tr>
<tr>
<td>Sensitivity range</td>
<td>10 – 150 kHz</td>
<td></td>
</tr>
<tr>
<td>Trigger modes</td>
<td>Manual, Continuous, Crest Adv, Crest, Period, SD</td>
<td></td>
</tr>
<tr>
<td>Frequency trigger (Crest) 4 parameters</td>
<td>Crestfaktor / RMS / Peakwert / HochPass</td>
<td></td>
</tr>
<tr>
<td>Frequency trigger (Crest Adv) 3 param.</td>
<td>Crestfaktor / min. F / max. F</td>
<td></td>
</tr>
<tr>
<td>Period trigger 2 parameters</td>
<td>minPer / sdPer</td>
<td></td>
</tr>
<tr>
<td>SD trigger 3 parameters</td>
<td>min. F / max. F / Sensitivity</td>
<td></td>
</tr>
<tr>
<td>Rec. duration after trigger (post-trigger)</td>
<td>0 – 10 sec @ 312.5 kHz SR</td>
<td></td>
</tr>
<tr>
<td>Rec. duration before trigger (pre-trigger)</td>
<td>0 – 5 sec @ 312.5 kHz SR</td>
<td></td>
</tr>
<tr>
<td>Rec. duration with manual trigger</td>
<td>0 – 53.5 sec @ 312.5 kHz SR</td>
<td></td>
</tr>
<tr>
<td>Rec. duration with continuous trigger</td>
<td>0 – 53.5 sec @ 312.5 kHz SR</td>
<td></td>
</tr>
<tr>
<td>Two time windows programmable per day for recordings (time of the day)</td>
<td>None set</td>
<td></td>
</tr>
<tr>
<td>Recording in intervals in time windows with preset pause times (number of minutes)</td>
<td>0 = no int.</td>
<td></td>
</tr>
</tbody>
</table>

Additional measurements (Position, time, temperature)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>GPS (coordinates / elev. meters / a.s.l / time)</td>
<td></td>
</tr>
<tr>
<td>GPS mode</td>
<td>on / off</td>
<td></td>
</tr>
<tr>
<td>Temperature reading</td>
<td>Resolution 1°C (internal / plug-in mic.)</td>
<td></td>
</tr>
</tbody>
</table>

Audio

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphone</td>
<td>Electret microphone</td>
<td></td>
</tr>
<tr>
<td>Speaker</td>
<td>Piezo, 90dB</td>
<td></td>
</tr>
<tr>
<td>Audio output</td>
<td>Headphone (3.5 mm mini jack/ 2 ch. mono)</td>
<td></td>
</tr>
</tbody>
</table>

Data storage

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage media</td>
<td>SD/SDHC/SDXC card (SD 2.0) max. 128 GB FAT32 formatted</td>
<td></td>
</tr>
<tr>
<td>Length of single “calls” sequences</td>
<td>0 – 53.5 sec per file @ 312.5 kHz SR max 53.5 s</td>
<td></td>
</tr>
<tr>
<td>Recording per GigaByte</td>
<td>approx. 25 minutes (real time)</td>
<td></td>
</tr>
</tbody>
</table>

Analysis

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data transfer from SD card</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time expansion</td>
<td>Factor 1 – 20 (pitch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Only certain models, see also 2.2 Device variants